$< Grafbase

Authorization in
Federated GraphQL

Tom Houlé

Federated GraphQL

Client A

Client B

\

Federation
Gateway

\

Subgraph A

Subgraph B

Service A

Why Authorize in the Gateway

e First point of contact to the outside world

Why Authorize in the Gateway

e First point of contact to the outside world
e Whole schema view

Why Authorize in the Gateway

e First point of contact to the outside world
e Whole schema view

e Whole request context

Why Authorize in the Gateway

e First point of contact to the outside world
e Whole schema view

e Whole request context

e Single point of enforcement

Why Authorize in the Gateway

First point of contact to the outside world
Whole schema view

Whole request context

Single point of enforcement

Entity resolvers make subgraphs lose context

Entity resolvers make subgraphs lose context

1 query { [@ GrathL]
2 ~entities(representations: [

1 query { [@ GrathL] 3 { typename: "User", id: "1" }

2 currentUser { 4 1) |

3 friends { 5 . on User {

4 profilePictureUrl 6 profilePictureUrl

5 name 7 name

6 photos { VS 8 photos {

7 urtl 9 urtl

8 } 10 }

9 } 11 }

10} 12}

=
=
-
l—l
w
-

Federation v2 Standard Directives

Federation v2 Standard Directives

e Based on claims aka scopes
e Claims are derived from:
» JWT claims

» Coprocessors

Federation v2 Standard Directives

directive @authenticated on [@ GrathL]
FIELD DEFINITION
| OBJECT
| INTERFACE
| SCALAR
| ENUM

1
2
3
4
5
6

Allows accessing the field or type when the request carries any verified JWT.

Federation v2 Standard Directives

1 directive @requiresScopes(scopes: [[federation Scope!]!]!) on [@SGrathL]
2 FIELD DEFINITION

3 | OBJECT

4 | INTERFACE

5 | SCALAR

6 | ENUM

Allows accessing the field or type when the request has the required scopes/
claims.

The outer list wrapper is interpreted as OR. The inner list wrapper is interpreted
as AND.

Federation v2 Standard Directives

directive @policy(policies: [[federation Policy!]!]!) on [ﬁiGrathL]
FIELD DEFINITION
| OBJECT
| INTERFACE
| SCALAR
| ENUM

1
2
3
4
5
6

Calls coprocessors or scripts for the given policies. A policy is just a name. The
coprocessor has access to claims and context like request headers.

Federation v2 Standard Directives

type Query { [ﬁiGrathL}
adminDashboard: AdminDashboard

@policy(policies: [
["ip 1s allowlisted"],
["is support agent", "in business hours"],

1)

N OO O B WN

Limitations

e The directives above are sufficient to enable RBAC and limited ABAC

Limitations

e The directives above are sufficient to enable RBAC and limited ABAC

e But decisions cannot be tied to data
» Inputs to the fields

» Output data returned by the subgraphs

Limitations

e The directives above are sufficient to enable RBAC and limited ABAC

e But decisions cannot be tied to data
» Inputs to the fields

» Output data returned by the subgraphs

e - Relationships cannot be enforced

» "Users can see the photos on the profile of their friends”
» “I can see the balance on my own bank account”
» "l can see the medical records of my own patients”

» "My direct manager can approve my expense requests if they are < 5000€"

Comprehensive authorization in the Gateway

Comprehensive authorization in the Gateway

e \We want to make authorization decisions based on:
» Request data

1 query { [ﬁﬁGrathL}
2 user(id: "user 015f91b8-eb7a-418a-8193-f72ddea5760d") {

3 socialSecurityNumber

4 }

5 }

Comprehensive authorization in the Gateway

e \We want to make authorization decisions based on:
» Request data

1 query { [@IGrathL}
2 user(id: "user 015f91b8-eb7a-418a-8193-f72ddea5760d") {

3 socialSecurityNumber

4 }

5 }

e And response data too

Comprehensive authorization in the Gateway

e \We want to make authorization decisions based on:
» Request data

1 query { [@IGrathL}
2 user(id: "user 015f91b8-eb7a-418a-8193-f72ddea5760d") {

3 socialSecurityNumber

4 }

5 }

e And response data too

e - Authorization must be taken into account by the query planner

Example

1 query PostsWithComments(:: i = i POStS

2 $userID: 1D! | 2 (get pOStW subgraph
3)1 1i(request) i

4 posts(user: $userID) {) —_—Y J

; e Client | Gateway i 3

6 comments (includeHidden: true) { \\E_/ :

7 author { name } 6|[response) i 4 (get comments)

8 commentText i :

9 createdAt | |

12) } | Comments
12} subgraph

Our solution

e Achieved with extensions.
» They can define their own directives that will be used by the Gateway for

query planning.
» Compiled to Wasm (WASI preview 2).
— Near-native performance, in-process secure sandbox.
— They can perform arbitrary 10 (with configurable capabilities).

Pre-subgraph request authorization: define a directive

extend schema [ﬁiGrathL]
@link(

1

2

3 url: "https://specs.grafbase.com/grafbase”,
4 import: ["InputFieldSet"])
5

6

directive @authorized(arguments: InputFieldSet = "*")

Authorization on input data: apply the directive

extend schema [@iGrathL}
@link(
url: "https://extensions.grafbase.com/authorized/0.1.0",

import: ["@authorized"])

type Query {
bankAccountByUserEmail (email: String!): BankAccount @authorized

0O NN O Ul A~ W N -

Authorization on input data: implement authzn logic

#[derive(serde: :Deserialize)]

struct Authorized<T> {

arguments: T,

#[derive(serde: :Deserialize)]
struct BankAccountByUserEmailArguments {
email: String,

11 fn authorize query(

12 &mut self,

13 headers: &mut SubgraphHeaders,

14 token: Token,

15 elements: QueryElements<' >,

16) -> Result<impl IntoQueryAuthorization, ErrorResponse> {

18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34
35

let mut builder = AuthorizationDecisions::deny some builder();

for element in elements {

let DirectiveSite::FieldDefinition(field) = element.directive site() else {

unreachable! ()

};

match (field.parent type name(), field.name()) {

("Query", "bankAccountByUserEmail") => {

let authorized: Authorized<BankAccountByUserEmailArguments>

element.directive arguments()?;

if authorized.arguments.email != "george@pizzahut.com" {

builder.deny(element,

_=> unreachable! (),

Ok(builder.build())

"Access denied");

Authorization on output data

o Takes place when a subgraph request is planned
o Will cause the field to become null, with your authorization error in errors
e The field and its subfields will not even be requested from the subgraph

Response authorization

type User @key(fields: "id") { [ﬁiGrathL]
id: ID!

email: String!

userType: UserType

1

2

3

4

5 socialSecurityNumber: String @policy(

§) policies: [["check access to user ssn"]]
7

8

}

Assume we need the id and userType of the user in addition to the current
request context to control access to the social security number.

Response authorization: Problem

Looks good, but...

1 query { [@ GrathL}
2 userByEmail (email: "george@pizzahut.com") {

3 socialSecurityNumber

4 }

5 1}

The id and userType fields are not going to be available, so our plugin /
coprocessor does not have the data it needs to make authorization decisions.

Response authorization: Solution

We define a directive that declaratively pulls in the fields we need in order to
make a decision:

1 extend schema [ﬁﬁGrathL}
2 @link(

3 url: "https://specs.grafbase.com/grafbase”,

4 import: ["FieldSet"])

5

6 directive @guard(requires: FieldSet!)

Response authorization: Solution

Then we apply it:

1 extend schema [@iGrathL]
2 @Link(

3 url: "https://extensions.grafbase.com/authorized/0.1.0",
4 import: ["@gquard"])

5

6 type User @key(fields: "id") {

7 id: ID!

8 email: String!

9 userType: UserType

10 socialSecurityNumber: String @gquard(

11 requires: "id userType { canReadSensitivelInfo }"

12)

Takeaways

e Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

Takeaways

e Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

e Integrated in the query planner
» It's a requirement

» Avoids requesting what the current client request is not authorized to see

» Potentially requests extra fields that are not needed to resolve the GraphQL
query, but are required to make authorization decisions.

Takeaways

e Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

e Integrated in the query planner
» It's a requirement

» Avoids requesting what the current client request is not authorized to see
» Potentially requests extra fields that are not needed to resolve the GraphQL
query, but are required to make authorization decisions.
e All these decisions batched by the query planner.

Takeaways

e Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

e Integrated in the query planner
» It's a requirement

» Avoids requesting what the current client request is not authorized to see
» Potentially requests extra fields that are not needed to resolve the GraphQL
query, but are required to make authorization decisions.
e All these decisions batched by the query planner.

Enables fine grained Attribute-based Access Control (ABAC) and Relation-
based Access Control (ReBAC).

Also

Also

Workshop!

Also

Workshop! Tomorrow!

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor.

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

Also

Workshop! Tomorrow!
Grote Zaal - 2nd Floor. 10:45am.
Thank youl!

< Grafbase

Links

e Blog post on fine-grained authorization by
Permit.io

e Docs on Apollo Federation v2 built-in
authorization directives

o Grafbase Authorization extensions:
» Grafbase blog post: Custom Authentication

and Authorization in GraphQL Federation

» Example project for authorization extensions

https://www.permit.io/blog/what-is-fine-grained-authorization-fga
https://www.permit.io/blog/what-is-fine-grained-authorization-fga
https://www.apollographql.com/docs/graphos/routing/security/authorization
https://www.apollographql.com/docs/graphos/routing/security/authorization
https://grafbase.com/blog/custom-authentication-and-authorization-in-graphql-federation
https://grafbase.com/blog/custom-authentication-and-authorization-in-graphql-federation
https://github.com/grafbase/grafbase/tree/main/examples/authorization

	Federated GraphQL
	Why Authorize in the Gateway
	Entity resolvers make subgraphs lose context
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Limitations
	Comprehensive authorization in the Gateway
	Example
	Our solution
	Pre-subgraph request authorization: define a directive
	Authorization on input data: apply the directive
	Authorization on input data: implement authzn logic
	Authorization on output data
	Response authorization
	Response authorization: Problem
	Response authorization: Solution
	Response authorization: Solution
	Takeaways
	Also
	Links

