
Authorization in
Federated GraphQL

Tom Houlé

Federated GraphQL

Client A

Client B

Federation
Gateway

Subgraph A

Subgraph B

Service A

1 / 24

Why Authorize in the Gateway

• First point of contact to the outside world

2 / 24

Why Authorize in the Gateway

• First point of contact to the outside world
• Whole schema view

2 / 24

Why Authorize in the Gateway

• First point of contact to the outside world
• Whole schema view
• Whole request context

2 / 24

Why Authorize in the Gateway

• First point of contact to the outside world
• Whole schema view
• Whole request context
• Single point of enforcement

2 / 24

Why Authorize in the Gateway

• First point of contact to the outside world
• Whole schema view
• Whole request context
• Single point of enforcement
• Entity resolvers make subgraphs lose context

2 / 24

Entity resolvers make subgraphs lose context

1 query { GraphQL
2 currentUser {
3 friends {
4 profilePictureUrl
5 name
6 photos {
7 url
8 }
9 }
10 }
11 }

VS

1 query { GraphQL
2 _entities(representations: [
3 { __typename: "User", id: "1" }
4]) {
5 ... on User {
6 profilePictureUrl
7 name
8 photos {
9 url
10 }
11 }
12 }
13 }

3 / 24

Federation v2 Standard Directives

4 / 24

Federation v2 Standard Directives

• Based on claims aka scopes
• Claims are derived from:

‣ JWT claims
‣ Coprocessors

4 / 24

Federation v2 Standard Directives

1 directive @authenticated on GraphQL
2 FIELD_DEFINITION
3 | OBJECT
4 | INTERFACE
5 | SCALAR
6 | ENUM

Allows accessing the field or type when the request carries any verified JWT.

5 / 24

Federation v2 Standard Directives

1 directive @requiresScopes(scopes: [[federation__Scope!]!]!) on GraphQL
2 FIELD_DEFINITION
3 | OBJECT
4 | INTERFACE
5 | SCALAR
6 | ENUM

Allows accessing the field or type when the request has the required scopes/
claims.

The outer list wrapper is interpreted as OR. The inner list wrapper is interpreted
as AND.

6 / 24

Federation v2 Standard Directives

1 directive @policy(policies: [[federation__Policy!]!]!) on GraphQL
2 FIELD_DEFINITION
3 | OBJECT
4 | INTERFACE
5 | SCALAR
6 | ENUM

Calls coprocessors or scripts for the given policies. A policy is just a name. The
coprocessor has access to claims and context like request headers.

7 / 24

Federation v2 Standard Directives

1 type Query { GraphQL
2 adminDashboard: AdminDashboard
3 @policy(policies: [
4 ["ip_is_allowlisted"],
5 ["is_support_agent", "in_business_hours"],
6])
7 }

8 / 24

Limitations

• The directives above are sufficient to enable RBAC and limited ABAC

9 / 24

Limitations

• The directives above are sufficient to enable RBAC and limited ABAC

• But decisions cannot be tied to data
‣ Inputs to the fields
‣ Output data returned by the subgraphs

9 / 24

Limitations

• The directives above are sufficient to enable RBAC and limited ABAC

• But decisions cannot be tied to data
‣ Inputs to the fields
‣ Output data returned by the subgraphs

• -> Relationships cannot be enforced
‣ “Users can see the photos on the profile of their friends”
‣ “I can see the balance on my own bank account”
‣ “I can see the medical records of my own patients”
‣ “My direct manager can approve my expense requests if they are < 5000€”

9 / 24

Comprehensive authorization in the Gateway

10 / 24

Comprehensive authorization in the Gateway

• We want to make authorization decisions based on:
‣ Request data

1 query { GraphQL
2 user(id: "user_015f91b8-eb7a-418a-8193-f72ddea5760d") {
3 socialSecurityNumber
4 }
5 }

10 / 24

Comprehensive authorization in the Gateway

• We want to make authorization decisions based on:
‣ Request data

1 query { GraphQL
2 user(id: "user_015f91b8-eb7a-418a-8193-f72ddea5760d") {
3 socialSecurityNumber
4 }
5 }

• And response data too

10 / 24

Comprehensive authorization in the Gateway

• We want to make authorization decisions based on:
‣ Request data

1 query { GraphQL
2 user(id: "user_015f91b8-eb7a-418a-8193-f72ddea5760d") {
3 socialSecurityNumber
4 }
5 }

• And response data too

• -> Authorization must be taken into account by the query planner

10 / 24

Example

1 query PostsWithComments(GraphQL
2 $userID: ID!
3) {
4 posts(user: $userID) {
5 title
6 comments(includeHidden: true) {
7 author { name }
8 commentText
9 createdAt
10 }
11 }
12 }

1 (request)
2 (get posts)

3

4 (get comments)

5

6 (response)

Re
qu

es
t l

ev
el

 a
ut

hz
n

Fi
ne

 g
ra

in
ed

 a
ut

hz
n

Client Gateway

Posts
subgraph

Comments
subgraph

11 / 24

Our solution

• Achieved with extensions.
‣ They can define their own directives that will be used by the Gateway for

query planning.
‣ Compiled to Wasm (WASI preview 2).

– Near-native performance, in-process secure sandbox.
– They can perform arbitrary IO (with configurable capabilities).

12 / 24

Pre-subgraph request authorization: define a directive

1 extend schema GraphQL
2 @link(
3 url: "https://specs.grafbase.com/grafbase",
4 import: ["InputFieldSet"])
5
6 directive @authorized(arguments: InputFieldSet = "*")

13 / 24

Authorization on input data: apply the directive

1 extend schema GraphQL
2 @link(
3 url: "https://extensions.grafbase.com/authorized/0.1.0",
4 import: ["@authorized"])
5
6 type Query {
7 bankAccountByUserEmail(email: String!): BankAccount @authorized
8 }

14 / 24

Authorization on input data: implement authzn logic

1 #[derive(serde::Deserialize)] Rust
2 struct Authorized<T> {
3 arguments: T,
4 }
5
6 #[derive(serde::Deserialize)]
7 struct BankAccountByUserEmailArguments {
8 email: String,
9 }
10
11 fn authorize_query(
12 &mut self,
13 headers: &mut SubgraphHeaders,
14 token: Token,
15 elements: QueryElements<'_>,
16) -> Result<impl IntoQueryAuthorization, ErrorResponse> {
17

15 / 24

18 let mut builder = AuthorizationDecisions::deny_some_builder();
19 for element in elements {
20 let DirectiveSite::FieldDefinition(field) = element.directive_site() else {
21 unreachable!()
22 };
23 match (field.parent_type_name(), field.name()) {
24 ("Query", "bankAccountByUserEmail") => {

25
 let authorized: Authorized<BankAccountByUserEmailArguments> =

element.directive_arguments()?;
26 if authorized.arguments.email != "george@pizzahut.com" {
27 builder.deny(element, "Access denied");
28 }
29 }
30 _ => unreachable!(),
31 }
32 }
33
34 Ok(builder.build())
35 }

16 / 24

Authorization on output data

• Takes place when a subgraph request is planned
• Will cause the field to become null, with your authorization error in errors
• The field and its subfields will not even be requested from the subgraph

17 / 24

Response authorization

1 type User @key(fields: "id") { GraphQL
2 id: ID!
3 email: String!
4 userType: UserType
5 socialSecurityNumber: String @policy(
6 policies: [["check_access_to_user_ssn"]]
7)
8 }

Assume we need the id and userType of the user in addition to the current
request context to control access to the social security number.

18 / 24

Response authorization: Problem

Looks good, but…

1 query { GraphQL
2 userByEmail(email: "george@pizzahut.com") {
3 socialSecurityNumber
4 }
5 }

The id and userType fields are not going to be available, so our plugin /
coprocessor does not have the data it needs to make authorization decisions.

19 / 24

Response authorization: Solution

We define a directive that declaratively pulls in the fields we need in order to
make a decision:

1 extend schema GraphQL
2 @link(
3 url: "https://specs.grafbase.com/grafbase",
4 import: ["FieldSet"])
5
6 directive @guard(requires: FieldSet!)

20 / 24

Response authorization: Solution

Then we apply it:

1 extend schema GraphQL
2 @link(
3 url: "https://extensions.grafbase.com/authorized/0.1.0",
4 import: ["@guard"])
5
6 type User @key(fields: "id") {
7 id: ID!
8 email: String!
9 userType: UserType
10 socialSecurityNumber: String @guard(
11 requires: "id userType { canReadSensitiveInfo }"
12)
13 }

21 / 24

Takeaways

• Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

22 / 24

Takeaways

• Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

• Integrated in the query planner
‣ It’s a requirement
‣ Avoids requesting what the current client request is not authorized to see
‣ Potentially requests extra fields that are not needed to resolve the GraphQL

query, but are required to make authorization decisions.

22 / 24

Takeaways

• Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

• Integrated in the query planner
‣ It’s a requirement
‣ Avoids requesting what the current client request is not authorized to see
‣ Potentially requests extra fields that are not needed to resolve the GraphQL

query, but are required to make authorization decisions.
• All these decisions batched by the query planner.

22 / 24

Takeaways

• Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

• Integrated in the query planner
‣ It’s a requirement
‣ Avoids requesting what the current client request is not authorized to see
‣ Potentially requests extra fields that are not needed to resolve the GraphQL

query, but are required to make authorization decisions.
• All these decisions batched by the query planner.
• Enables fine grained Attribute-based Access Control (ABAC) and Relation-

based Access Control (ReBAC).

22 / 24

Also

23 / 24

Also

Workshop!

23 / 24

Also

Workshop! Tomorrow!

23 / 24

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor.

23 / 24

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

23 / 24

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

Thank you!

23 / 24

Links

• Blog post on fine-grained authorization by
Permit.io

• Docs on Apollo Federation v2 built-in
authorization directives

• Grafbase Authorization extensions:
‣ Grafbase blog post: Custom Authentication

and Authorization in GraphQL Federation
‣ Example project for authorization extensions

24 / 24

https://www.permit.io/blog/what-is-fine-grained-authorization-fga
https://www.permit.io/blog/what-is-fine-grained-authorization-fga
https://www.apollographql.com/docs/graphos/routing/security/authorization
https://www.apollographql.com/docs/graphos/routing/security/authorization
https://grafbase.com/blog/custom-authentication-and-authorization-in-graphql-federation
https://grafbase.com/blog/custom-authentication-and-authorization-in-graphql-federation
https://github.com/grafbase/grafbase/tree/main/examples/authorization

	Federated GraphQL
	Why Authorize in the Gateway
	Entity resolvers make subgraphs lose context
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Federation v2 Standard Directives
	Limitations
	Comprehensive authorization in the Gateway
	Example
	Our solution
	Pre-subgraph request authorization: define a directive
	Authorization on input data: apply the directive
	Authorization on input data: implement authzn logic
	Authorization on output data
	Response authorization
	Response authorization: Problem
	Response authorization: Solution
	Response authorization: Solution
	Takeaways
	Also
	Links

