
Authorization in
Federated GraphQL

Tom Houlé



Federated GraphQL

Client A

Client B

Federation
Gateway

Subgraph A

Subgraph B

Service A

1 / 24



Why Authorize in the Gateway

• First point of contact to the outside world
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Why Authorize in the Gateway

• First point of contact to the outside world
• Whole schema view
• Whole request context
• Single point of enforcement
• Entity resolvers make subgraphs lose context
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Entity resolvers make subgraphs lose context

1 query { GraphQL
2  currentUser {
3    friends {
4      profilePictureUrl
5      name
6      photos {
7        url
8      }
9    }
10  }
11 }

 

VS

 

1 query { GraphQL
2   _entities(representations: [
3     { __typename: "User", id: "1" }
4   ]) {
5     ... on User {
6       profilePictureUrl
7       name
8       photos {
9           url
10       }
11     }
12   }
13 }
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Federation v2 Standard Directives
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Federation v2 Standard Directives

• Based on claims aka scopes
• Claims are derived from:

‣ JWT claims
‣ Coprocessors
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Federation v2 Standard Directives

1 directive @authenticated on GraphQL
2     FIELD_DEFINITION
3   | OBJECT
4   | INTERFACE
5   | SCALAR
6   | ENUM

Allows accessing the field or type when the request carries any verified JWT.
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Federation v2 Standard Directives

1 directive @requiresScopes(scopes: [[federation__Scope!]!]!) on GraphQL
2     FIELD_DEFINITION
3   | OBJECT
4   | INTERFACE
5   | SCALAR
6   | ENUM

Allows accessing the field or type when the request has the required scopes/
claims.

The outer list wrapper is interpreted as OR. The inner list wrapper is interpreted
as AND.
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Federation v2 Standard Directives

1 directive @policy(policies: [[federation__Policy!]!]!) on GraphQL
2     FIELD_DEFINITION
3   | OBJECT
4   | INTERFACE
5   | SCALAR
6   | ENUM

Calls coprocessors or scripts for the given policies. A policy is just a name. The
coprocessor has access to claims and context like request headers.
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Federation v2 Standard Directives

1 type Query { GraphQL
2     adminDashboard: AdminDashboard
3         @policy(policies: [
4             ["ip_is_allowlisted"],
5             ["is_support_agent", "in_business_hours"],
6         ])
7 }
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Limitations

• The directives above are sufficient to enable RBAC and limited ABAC
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Limitations

• The directives above are sufficient to enable RBAC and limited ABAC

• But decisions cannot be tied to data
‣ Inputs to the fields
‣ Output data returned by the subgraphs

• -> Relationships cannot be enforced
‣ “Users can see the photos on the profile of their friends”
‣ “I can see the balance on my own bank account”
‣ “I can see the medical records of my own patients”
‣ “My direct manager can approve my expense requests if they are < 5000€”
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Comprehensive authorization in the Gateway
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Comprehensive authorization in the Gateway

• We want to make authorization decisions based on:
‣ Request data

1 query { GraphQL
2     user(id: "user_015f91b8-eb7a-418a-8193-f72ddea5760d") {
3         socialSecurityNumber
4     }
5 }
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Comprehensive authorization in the Gateway

• We want to make authorization decisions based on:
‣ Request data

1 query { GraphQL
2     user(id: "user_015f91b8-eb7a-418a-8193-f72ddea5760d") {
3         socialSecurityNumber
4     }
5 }

• And response data too

• -> Authorization must be taken into account by the query planner
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Example

1 query PostsWithComments( GraphQL
2     $userID: ID!
3 ) {
4   posts(user: $userID) {
5     title
6     comments(includeHidden: true) {
7       author { name }
8       commentText
9       createdAt
10     }
11   }
12 }  

1 (request)
2 (get posts)

3

4 (get comments)

5

6 (response)
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Our solution

• Achieved with extensions.
‣ They can define their own directives that will be used by the Gateway for

query planning.
‣ Compiled to Wasm (WASI preview 2).

– Near-native performance, in-process secure sandbox.
– They can perform arbitrary IO (with configurable capabilities).
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Pre-subgraph request authorization: define a directive

1 extend schema GraphQL
2   @link(
3       url: "https://specs.grafbase.com/grafbase",
4       import: ["InputFieldSet"])
5
6 directive @authorized(arguments: InputFieldSet = "*")
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Authorization on input data: apply the directive

1 extend schema GraphQL
2   @link(
3       url: "https://extensions.grafbase.com/authorized/0.1.0",
4       import: ["@authorized"])
5
6 type Query {
7     bankAccountByUserEmail(email: String!): BankAccount @authorized
8 }
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Authorization on input data: implement authzn logic

1 #[derive(serde::Deserialize)] Rust
2 struct Authorized<T> {
3     arguments: T,
4 }
5
6 #[derive(serde::Deserialize)]
7 struct BankAccountByUserEmailArguments {
8     email: String,
9 }
10
11 fn authorize_query(
12     &mut self,
13     headers: &mut SubgraphHeaders,
14     token: Token,
15     elements: QueryElements<'_>,
16 ) -> Result<impl IntoQueryAuthorization, ErrorResponse> {
17
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18     let mut builder = AuthorizationDecisions::deny_some_builder();
19     for element in elements {
20         let DirectiveSite::FieldDefinition(field) = element.directive_site() else {
21             unreachable!()
22         };
23         match (field.parent_type_name(), field.name()) {
24             ("Query", "bankAccountByUserEmail") => {

25
                let authorized: Authorized<BankAccountByUserEmailArguments> =

element.directive_arguments()?;
26                 if authorized.arguments.email != "george@pizzahut.com" {
27                     builder.deny(element, "Access denied");
28                 }
29             }
30             _ => unreachable!(),
31         }
32     }
33
34     Ok(builder.build())
35 }
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Authorization on output data

• Takes place when a subgraph request is planned
• Will cause the field to become null, with your authorization error in errors
• The field and its subfields will not even be requested from the subgraph
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Response authorization

1 type User @key(fields: "id") { GraphQL
2   id: ID!
3   email: String!
4   userType: UserType
5   socialSecurityNumber: String @policy(
6     policies: [["check_access_to_user_ssn"]]
7   )
8 }

Assume we need the id and userType of the user in addition to the current
request context to control access to the social security number.
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Response authorization: Problem

Looks good, but…

1 query { GraphQL
2   userByEmail(email: "george@pizzahut.com") {
3     socialSecurityNumber
4   }
5 }

The id and userType fields are not going to be available, so our plugin /
coprocessor does not have the data it needs to make authorization decisions.

19 / 24



Response authorization: Solution

We define a directive that declaratively pulls in the fields we need in order to
make a decision:

1 extend schema GraphQL
2   @link(
3       url: "https://specs.grafbase.com/grafbase",
4       import: ["FieldSet"])
5
6 directive @guard(requires: FieldSet!)
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Response authorization: Solution

Then we apply it:

1 extend schema GraphQL
2   @link(
3       url: "https://extensions.grafbase.com/authorized/0.1.0",
4       import: ["@guard"])
5
6 type User @key(fields: "id") {
7   id: ID!
8   email: String!
9   userType: UserType
10   socialSecurityNumber: String @guard(
11     requires: "id userType { canReadSensitiveInfo }"
12   )
13 }
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Takeaways

• Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.
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• Authorization decision for each annotated field or type can depend on inputs
(arguments) or arbitrary associated data.

• Integrated in the query planner
‣ It’s a requirement
‣ Avoids requesting what the current client request is not authorized to see
‣ Potentially requests extra fields that are not needed to resolve the GraphQL

query, but are required to make authorization decisions.
• All these decisions batched by the query planner.
• Enables fine grained Attribute-based Access Control (ABAC) and Relation-

based Access Control (ReBAC).
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Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

Thank you!
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Links

• Blog post on fine-grained authorization by
Permit.io

• Docs on Apollo Federation v2 built-in
authorization directives

• Grafbase Authorization extensions:
‣ Grafbase blog post: Custom Authentication

and Authorization in GraphQL Federation
‣ Example project for authorization extensions

24 / 24

https://www.permit.io/blog/what-is-fine-grained-authorization-fga
https://www.permit.io/blog/what-is-fine-grained-authorization-fga
https://www.apollographql.com/docs/graphos/routing/security/authorization
https://www.apollographql.com/docs/graphos/routing/security/authorization
https://grafbase.com/blog/custom-authentication-and-authorization-in-graphql-federation
https://grafbase.com/blog/custom-authentication-and-authorization-in-graphql-federation
https://github.com/grafbase/grafbase/tree/main/examples/authorization
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