Custom Test Setup for
Stateful Applications

Feat. Proc Macros



The problem

What we do

- Stateful tests working directly with a database
- Many database backends

What we want

Run the same test across different databases, with some configurability
Readability

Maintainability

Concurrency



First solution

#[test]
fn unique_in_conjunction_with_custom_column_name_must_work() {
test_each_connector(|sql_family, api| {
let dm1 = r#"
model A {
id Int @id
field String @unique @map("custom_field_name")

e
let result = infer_and_apply(api, &dm1).sqgl_schema;
let index = result

.table_bang("A")

.indices

.iter()

.find(|i|] i.columns == &["custom_field_name"]);
assert_eq!(index.is_some(), true);
assert_eq! (index.unwrap().tpe, IndexType::Unique);

1)



First solution (1).ppt

Pseudo-code version of test_each_connector:

fn test_each_connector(f: F) where F: Fn(...) {
println!(“---- Testing mysql ----- ");
let database = get_mysql_database().unwrap();
let test_api = mysql_test_api(database).unwrap();
test_fn(SqlFamily: :Mysql, test_api);
// .. then do the same for mysql 8, postgres 10, sqglite



What works

- Easy to implement
- As custom as needed
- Can do setup before running the group of tests



What doesn’t work

We didn’t isolate state
- In practice we used "--test-threads=1" and a custom “test.sh’

Hard to distinguish tests
- One test is many tests
- Limited concurrency
Inflexible in practice
- We didn’t want to build a config object for each test, so we had multiple helpers
- Inconsistent across the codebase
- Lots of unrelated code needed to be updated when adding a connector
test(| , apil{noisy})

- Extra indentation!



The final straw

From:

#[test]
fn unique_in_conjunction_with_at_map_must_work() {
test_each_connector(|sql_family, api| {
todo! (“logic goes here”);

1)



The final straw

To:

#[test]
fn unique_in_conjunction_with_at_map_must_work() {
test_each_connector(|sql_family, api| async {
todo! (“logic goes here”);
}.boxed());



The final straw

To:

dentation

#[test]
fn unique_in_conjunction_with_at_map_must_work() {
test_each_connector(|sql_family, api| async {
todo! (“logic goes here”);
}.boxed());




~1'SHOULD WRITERA MACRO

imgfip.com




What we did next

- We knew we wanted a proc macro attribute for tests
- like async_macros or tokio: :test
- We couldn’t use these

- Repetitive test setup + multiple tests per function + async
- ->fuuuuuusion



Quick primer on procedural macros

- fn(TokenStream) -> TokenStream
- Attributes macro can rewrite their items



Important crates

syn: parse TokenStreams into ASTs

quote: generate rust code (quote! (pub fn left_pad() { todo!() }) )
darling: serde-derive for rust attributes

cargo-expand: see what the macros expand to



Example

extern crate proc_macro;

use proc_macro: :TokenStream;
use syn::ItemStruct;

#[proc_macro_attribute]
pub fn make_public(attr: TokenStream, item: TokenStream) -> TokenStream {

let item = syn::parse_macro_input!(item as ItemStruct);
quote::quote!( pub #item ).into()



Example (1).jpg

use make_public::make_public;

#[make_public]
struct Private;

// expands to:

pub struct Private;



Sketch of the transformation

- You write an async function that takes the test setup, slap the
#[test_each connector] macro attribute on it.

- For each connector, the macro will:

Produce a regular #[test] function that sets up the database, the async runtime and blocks on
the function you wrote.



& b
M
-

imgflip.com



Good sides

- The tests fail in isolation

- The tests are easy to filter
“cargo test postgres’

- Visually much cleaner



Good sides

Now runs with just ‘cargo test’

Very flexible/decoupled/customizable
- The macro does not care about TestApi implementation
- You only need a TestApi constructor for each connector you want to support
- New TestApi structs are fast to build (e.g TestApi simulating multiple users)

The macro knows a lot about your code and it can generate boilerplate for

you
- Example: optional return type, automatic unique database name, etc.



Bad sides

- Macros are harder to implement and understand
- Rust metaprogramming is very powerful
- ->depend on regular crates inside your macros, it's doable and good, actually

- The macro attributes are not as discoverable as functions in a "test _setup’
module (document them!)
- No teardown



Learnings

- Shared-nothing test setup is often the easiest to implement
No premature reuse of test setup. Rust is fast.

- Proc Macros are good
-  Use with moderation
- In the future: custom test frameworks



Links

e The proc macro chapter in the Rust Book
https://doc.rust-lang.ora/book/ch19-06-macros.html?highlight=procedural#pro
cedural-macros-for-generating-code-from-attributes

e ERFC for custom test frameworks
https://qithub.com/rust-lang/rfcs/pull/2318

e Blog post on how the built-in #[test] attribute works
https://blog.jrenner.net/rust/testing/2018/07/19/test-in-2018.html

e serial _test crate
https://crates.io/crates/serial_test



https://doc.rust-lang.org/book/ch19-06-macros.html?highlight=procedural#procedural-macros-for-generating-code-from-attributes
https://doc.rust-lang.org/book/ch19-06-macros.html?highlight=procedural#procedural-macros-for-generating-code-from-attributes
https://github.com/rust-lang/rfcs/pull/2318
https://blog.jrenner.net/rust/testing/2018/07/19/test-in-2018.html
https://crates.io/crates/serial_test

