$< Grafbase

The Federated GraphQL
Subscriptions Zoo

*mAWE

Tom Houlé

Federated GraphQL

Client A

Client B

\

Federation
Gateway

\

Subgraph A

Subgraph B

Service A

Subscriptions are special... in GraphQL

“subscription — a long-lived request that fetches data in response to a sequence
of events over time"

— GraphQL spec (Sept 2025)

https://spec.graphql.org/September2025/#sel-GAFTJFABRBb-lZ

Subscriptions are special... in GraphQL

“subscription — a long-lived request that fetches data in response to a sequence
of events over time"

— GraphQL spec (Sept 2025)

“GraphQL supports type name introspection within any selection set in an
operation, with the single exception of selections at the root of a subscription
operation.”

— GraphQL spec (Sept 2025)

https://spec.graphql.org/September2025/#sel-GAFTJFABRBb-lZ
https://spec.graphql.org/September2025/#sec-Type-Name-Introspection

Subscriptions are special... in GraphQL

“Subscription operations must have exactly one root field.

To enable us to determine this without access to runtime variables, we must

forbid the @skip and @include directives in the root selection set.”
— GraphQL spec (Sept 2025)

“While each subscription must have exactly one root field, a document may
contain any number of operations, each of which may contain different root
fields. When executed, a document containing multiple subscription operations

must provide the operation name as described in GetOperation()."
— GraphQL spec (Sept 2025)

https://spec.graphql.org/September2025/#sel-IALPJDFDABiBB4Bwzc
https://spec.graphql.org/September2025/#sel-IALPJDFbCBBBKsiQ

Subscriptions are special... in GraphQL-over-HTTP

Subscriptions are special... in GraphQL-over-HTTP

“GraphQL Subscriptions are beyond the scope of this specification at this time."
— GraphQL over HTTP spec (draft)

https://graphql.github.io/graphql-over-http/draft/#sel-EAFPCBJBSqsJ

Subscriptions are special... in GraphQL-over-HTTP

“GraphQL Subscriptions are beyond the scope of this specification at this time."
— GraphQL over HTTP spec (draft)

P N

")

https://graphql.github.io/graphql-over-http/draft/#sel-EAFPCBJBSqsJ

Subscriptions are actually not that special in Federated GraphQL

Subscriptions are actually not that special in Federated GraphQL

Schema of the sales subgraph: Schema of the products subgraph:
1 type Product @key(fields: "id") { 1 type Product @key(fields: "id") {
2 id: ID! 2 id: ID!
3 } 3 name: String!
4 4}
5 type Subscription { 5
6 productSales: Product 6 type Query {
7 } 7 productById(
8 id: 1ID!
9

): Product @lookup
10 }

Subscriptions are actually not that special in Federated GraphQL

Gateway - sales subgraph

1 subscription {
Client - Gateway 2 productsates {
3 id
1 subscription ProductSalesWithName { 4 }
2 productSales { 5 }
3 name
43} Gateway - products subgraph
>) 1 query {
2 productById(id: $id) {
3 name
4 }
5 }

Subscriptions are actually not that special in Federated GraphQL
Data returned to the client:

{"name" :"Labubu"}

{"name" :"Labubu"}
{"name":"Crocs"}

{"name" :"Zune"}

{"name" :"Furbies (12 pack)"}
{"name" :"Labubu"}

{"name": "Google Glass"}

N o O A WN

The problems with Federated Subscriptions

e Lack of transport standardisation has led to fragmentation:

The problems with Federated Subscriptions

e Lack of transport standardisation has led to fragmentation:
» WebSockets (HTTP/1.1)
— Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

The problems with Federated Subscriptions

e Lack of transport standardisation has led to fragmentation:
» WebSockets (HTTP/1.1)
— Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

The problems with Federated Subscriptions

e Lack of transport standardisation has led to fragmentation:
» WebSockets (HTTP/1.1)
— Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

» SSE (HTTP/2 and 3)

The problems with Federated Subscriptions

e Lack of transport standardisation has led to fragmentation:
» WebSockets (HTTP/1.1)

— Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

» SSE (HTTP/2 and 3)
» Multipart

The problems with Federated Subscriptions

e Lack of transport standardisation has led to fragmentation:
» WebSockets (HTTP/1.1)
— Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

» SSE (HTTP/2 and 3)
» Multipart

e Resource consumption: one connection between the Gateway and the relevant subgraph per
subscribed client, even when they all subscribe to the same events

The problems with Federated Subscriptions

e Lack of transport standardisation has led to fragmentation:

» WebSockets (HTTP/1.1)
— Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

» SSE (HTTP/2 and 3)

» Multipart
e Resource consumption: one connection between the Gateway and the relevant subgraph per

subscribed client, even when they all subscribe to the same events
e Multi-protocol subscriptions

Multi-protocol subscriptions

* / Client— ¥ - Gateway — @ > / Subgraph

Multi-protocol subscriptions

* / Client— ¥ - Gateway — @ > / Subgraph

e In the gateway, translations between:
» SSE,
» WebSockets

— subscriptions-transport-ws

— graphql-ws [/ graphql-transport-ws

o And different handshake shapes between each!
» Headers vs websocket init payload shape mismatch

1 interface ConnectionInitMessage {

2 type: 'connection init';

3 payload?: Record<string, unknown> | null;
4

Multi-protocol subscriptions

* / Client— # - Gateway — @ > / Subgraph

e In the gateway, translations between:
» SSE,
» WebSockets

— subscriptions-i

— graphql-ws / gr:

e And different hands
» Headers vs webs

interface Conne«
type: 'connec

. ‘"- ‘ S (- .- = ~’l '
ST R R
VA ne/apple Aﬁg{e Pe/n "\;-’4 '\:{&

1
2
3 payload?: Rect
4

9/18

Alternative: connect the gateway to a message queue

e The idea: the GraphQL federation gateway connects to a message queue (Kafka,
NATS, ...), not the subgraphs directly
» The subgraphs or other services post messages to that queue
o Two implementations
» Cosmo EDFS
» Grafbase extensions

https://cosmo-docs.wundergraph.com/router/event-driven-federated-subscriptions-edfs
https://grafbase.com/docs/extensions

Grafbase Extensions

e Pluggable gateway extensions compiled to WebAssembly (WASI preview 2)

» Define their own directives that will be used by the Gateway for query planning
Near-native performance, in-process secure sandbox.
Can perform arbitrary IO (but you can restrict that with permissions).
Open source extensions from the Grafbase Marketplace or build your own
They can act as virtual subgraphs

v

v

v

v

14
15
16
17
18
19
20
21
22

extend schema
@link(

url: "https://specs.grafbase.com/composite-schemas/v1"

import: ["@key", "@derive"]

)
@link(

url: "https://extensions.grafbase.com/extensions/nats/0.4.1"

import: ["@natsPublish", "@natsSubscription"]

input SellProductInput {
productId: ID!
price: Int!

type Mutation {

sellProduct(input: SellProductInput!): Boolean!

@natsPublish(

subject: "productSales",

body: { selection:

"}

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

type Product @key(fields: "id") {

id: ID!

type ProductSale {

productId: ID!

product: Product! @derive

price: Int!

type Subscription {

sales(subject: String!): ProductSale

@natsSubscription(

subject: "{{ args.subject }}"

selection:

"select(.price > 10)"

Corresponding configuration

1 [extensions.nats]
2 version = "0.4.1"
3

4 [[extensions.nats.config.endpoint]]
5 servers = ["nats://localhost:4222"]

Advantages of an extensions-based approach compared to EDFS

o Arbitrary data formats for the messages (not only JSON)

o Customizable and extensible without forking the Gateway. You can write
extensions for other pub/sub systems (Kinesis, etc.).

e More powerful filters (jq expression language)

Takeaways

Takeaways

» Federated GraphQL subscriptions require some thinking and planning.

Takeaways

» Federated GraphQL subscriptions require some thinking and planning.

e Pros of traditional federated subscriptions

» Reuse: federate existing GraphQL subgraphs, no need to modify them
» Control: subscription fields are managed directly in your own GraphQL subgraph

Takeaways

» Federated GraphQL subscriptions require some thinking and planning.

e Pros of traditional federated subscriptions

» Reuse: federate existing GraphQL subgraphs, no need to modify them
» Control: subscription fields are managed directly in your own GraphQL subgraph

e Pros of subscriptions offloaded to a message queue
» Stream deduplication
» Non-GraphQL services can publish to subjects directly
» Usually higher performance, lower memory footprint

Takeaways

» Federated GraphQL subscriptions require some thinking and planning.

e Pros of traditional federated subscriptions

» Reuse: federate existing GraphQL subgraphs, no need to modify them
» Control: subscription fields are managed directly in your own GraphQL subgraph

e Pros of subscriptions offloaded to a message queue
» Stream deduplication

» Non-GraphQL services can publish to subjects directly
» Usually higher performance, lower memory footprint

You can mix and match both approaches

Also

Also

Workshop!

Also

Workshop! Tomorrow!

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor.

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

Also

Workshop! Tomorrow!
Grote Zaal - 2nd Floor. 10:45am.
Thank you!

< Grafbase

Links

WebSockets

» subscriptions-transport-ws
» Issues and security implications with subscriptions-transport-ws
e SSE

» GraphQL-SSE spec

Multipart subscriptions

» Incremental delivery over HTTP
» Apollo docs

Grafbase extensions

Cosmo EDFS

Pen Pineapple Apple Pen

https://github.com/apollographql/subscriptions-transport-ws
https://github.com/enisdenjo/graphql-ws/issues/3
https://github.com/enisdenjo/graphql-sse/blob/master/PROTOCOL.md
https://github.com/graphql/graphql-over-http/blob/main/rfcs/IncrementalDelivery.md
https://www.apollographql.com/docs/graphos/routing/operations/subscriptions/multipart-protocol
https://grafbase.com/docs/extensions
https://cosmo-docs.wundergraph.com/router/event-driven-federated-subscriptions-edfs#the-%E2%80%9Csubjects%E2%80%9D-argument
https://www.youtube.com/watch?v=NfuiB52K7X8

	Federated GraphQL
	Subscriptions are special… in GraphQL
	Subscriptions are special… in GraphQL
	Subscriptions are special… in GraphQL-over-HTTP
	Subscriptions are actually not that special in Federated GraphQL
	Subscriptions are actually not that special in Federated GraphQL
	Subscriptions are actually not that special in Federated GraphQL
	The problems with Federated Subscriptions
	Multi-protocol subscriptions
	Alternative: connect the gateway to a message queue
	Grafbase Extensions
	
	Corresponding configuration
	Advantages of an extensions-based approach compared to EDFS
	Takeaways
	Also
	Links

