
The Federated GraphQL
Subscriptions Zoo
🐢🦏🦧🦬🦉

Tom Houlé

Federated GraphQL

Client A

Client B

Federation
Gateway

Subgraph A

Subgraph B

Service A

1 / 18

Subscriptions are special… in GraphQL

“subscription — a long-lived request that fetches data in response to a sequence
of events over time”

— GraphQL spec (Sept 2025)

2 / 18

https://spec.graphql.org/September2025/#sel-GAFTJFABRBb-lZ

Subscriptions are special… in GraphQL

“subscription — a long-lived request that fetches data in response to a sequence
of events over time”

— GraphQL spec (Sept 2025)

“GraphQL supports type name introspection within any selection set in an
operation, with the single exception of selections at the root of a subscription
operation.”

— GraphQL spec (Sept 2025)

2 / 18

https://spec.graphql.org/September2025/#sel-GAFTJFABRBb-lZ
https://spec.graphql.org/September2025/#sec-Type-Name-Introspection

Subscriptions are special… in GraphQL

“Subscription operations must have exactly one root field.

To enable us to determine this without access to runtime variables, we must
forbid the @skip and @include directives in the root selection set.”

— GraphQL spec (Sept 2025)

“While each subscription must have exactly one root field, a document may
contain any number of operations, each of which may contain different root
fields. When executed, a document containing multiple subscription operations
must provide the operation name as described in GetOperation().”

— GraphQL spec (Sept 2025)

3 / 18

https://spec.graphql.org/September2025/#sel-IALPJDFDABiBB4Bwzc
https://spec.graphql.org/September2025/#sel-IALPJDFbCBBBKsiQ

Subscriptions are special… in GraphQL-over-HTTP

4 / 18

Subscriptions are special… in GraphQL-over-HTTP

“GraphQL Subscriptions are beyond the scope of this specification at this time.”
— GraphQL over HTTP spec (draft)

4 / 18

https://graphql.github.io/graphql-over-http/draft/#sel-EAFPCBJBSqsJ

Subscriptions are special… in GraphQL-over-HTTP

“GraphQL Subscriptions are beyond the scope of this specification at this time.”
— GraphQL over HTTP spec (draft)

😱

4 / 18

https://graphql.github.io/graphql-over-http/draft/#sel-EAFPCBJBSqsJ

Subscriptions are actually not that special in Federated GraphQL

5 / 18

Subscriptions are actually not that special in Federated GraphQL
Schema of the sales subgraph:

1 type Product @key(fields: "id") {
2 id: ID!
3 }
4
5 type Subscription {
6 productSales: Product
7 }

Schema of the products subgraph:

1 type Product @key(fields: "id") {
2 id: ID!
3 name: String!
4 }
5
6 type Query {
7 productById(
8 id: ID!
9): Product @lookup
10 }

5 / 18

Subscriptions are actually not that special in Federated GraphQL

Client -> Gateway

1 subscription ProductSalesWithName {
2 productSales {
3 name
4 }
5 }

Gateway -> sales subgraph

1 subscription {
2 productSales {
3 id
4 }
5 }

Gateway -> products subgraph

1 query {
2 productById(id: $id) {
3 name
4 }
5 }

6 / 18

Subscriptions are actually not that special in Federated GraphQL

Data returned to the client:

1 {"name":"Labubu"}
2 {"name":"Labubu"}
3 {"name":"Crocs"}
4 {"name":"Zune"}
5 {"name":"Furbies (12 pack)"}
6 {"name":"Labubu"}
7 {"name": "Google Glass"}

7 / 18

The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:

8 / 18

The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:

‣ WebSockets (HTTP/1.1)
– Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

8 / 18

The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:

‣ WebSockets (HTTP/1.1)
– Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

8 / 18

The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:

‣ WebSockets (HTTP/1.1)
– Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

‣ SSE (HTTP/2 and 3)

8 / 18

The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:

‣ WebSockets (HTTP/1.1)
– Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

‣ SSE (HTTP/2 and 3)
‣ Multipart

8 / 18

The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:

‣ WebSockets (HTTP/1.1)
– Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

‣ SSE (HTTP/2 and 3)
‣ Multipart

• Resource consumption: one connection between the Gateway and the relevant subgraph per
subscribed client, even when they all subscribe to the same events

8 / 18

The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:

‣ WebSockets (HTTP/1.1)
– Subprotocols with protocol negotiation

1 Sec-WebSocket-Version: 13
2 Sec-WebSocket-Protocol: graphql-ws, graphql-transport-ws

‣ SSE (HTTP/2 and 3)
‣ Multipart

• Resource consumption: one connection between the Gateway and the relevant subgraph per
subscribed client, even when they all subscribe to the same events

• Multi-protocol subscriptions

8 / 18

Multi-protocol subscriptions

• 🖊 Client — 🍍-> Gateway — 🍎-> 🖊 Subgraph

9 / 18

Multi-protocol subscriptions

• 🖊 Client — 🍍-> Gateway — 🍎-> 🖊 Subgraph

• In the gateway, translations between:
‣ SSE,
‣ WebSockets

– subscriptions-transport-ws

– graphql-ws / graphql-transport-ws

• And different handshake shapes between each!
‣ Headers vs websocket init payload shape mismatch

1 interface ConnectionInitMessage {
2 type: 'connection_init';
3 payload?: Record<string, unknown> | null;
4 }

9 / 18

Multi-protocol subscriptions

• 🖊 Client — 🍍-> Gateway — 🍎-> 🖊 Subgraph

• In the gateway, translations between:
‣ SSE,
‣ WebSockets

– subscriptions-transport-ws

– graphql-ws / graphql-transport-ws

• And different handshake shapes between each!
‣ Headers vs websocket init payload shape mismatch

1 interface ConnectionInitMessage {
2 type: 'connection_init';
3 payload?: Record<string, unknown> | null;
4 }

9 / 18

Alternative: connect the gateway to a message queue

• The idea: the GraphQL federation gateway connects to a message queue (Kafka,
NATS, …), not the subgraphs directly
‣ The subgraphs or other services post messages to that queue

• Two implementations
‣ Cosmo EDFS
‣ Grafbase extensions

10 / 18

https://cosmo-docs.wundergraph.com/router/event-driven-federated-subscriptions-edfs
https://grafbase.com/docs/extensions

Grafbase Extensions

• Pluggable gateway extensions compiled to WebAssembly (WASI preview 2)
‣ Define their own directives that will be used by the Gateway for query planning
‣ Near-native performance, in-process secure sandbox.
‣ Can perform arbitrary IO (but you can restrict that with permissions).
‣ Open source extensions from the Grafbase Marketplace or build your own
‣ They can act as virtual subgraphs

11 / 18

1 extend schema
2 @link(
3 url: "https://specs.grafbase.com/composite-schemas/v1"
4 import: ["@key", "@derive"]
5)
6 @link(
7 url: "https://extensions.grafbase.com/extensions/nats/0.4.1"
8 import: ["@natsPublish", "@natsSubscription"]
9)
10
11 input SellProductInput {
12 productId: ID!
13 price: Int!
14 }
15
16 type Mutation {
17 sellProduct(input: SellProductInput!): Boolean!
18 @natsPublish(
19 subject: "productSales",
20 body: { selection: "*" })
21 }
22

12 / 18

23 type Product @key(fields: "id") {
24 id: ID!
25 }
26
27 type ProductSale {
28 productId: ID!
29 product: Product! @derive
30 price: Int!
31 }
32
33 type Subscription {
34 sales(subject: String!): ProductSale
35 @natsSubscription(
36 subject: "{{ args.subject }}"
37 selection: "select(.price > 10)"
38)
39 }

13 / 18

Corresponding configuration

1 [extensions.nats]
2 version = "0.4.1"
3
4 [[extensions.nats.config.endpoint]]
5 servers = ["nats://localhost:4222"]

14 / 18

Advantages of an extensions-based approach compared to EDFS

• Arbitrary data formats for the messages (not only JSON)
• Customizable and extensible without forking the Gateway. You can write

extensions for other pub/sub systems (Kinesis, etc.).
• More powerful filters (jq expression language)

15 / 18

Takeaways

16 / 18

Takeaways

• Federated GraphQL subscriptions require some thinking and planning.

16 / 18

Takeaways

• Federated GraphQL subscriptions require some thinking and planning.

• Pros of traditional federated subscriptions
‣ Reuse: federate existing GraphQL subgraphs, no need to modify them
‣ Control: subscription fields are managed directly in your own GraphQL subgraph

16 / 18

Takeaways

• Federated GraphQL subscriptions require some thinking and planning.

• Pros of traditional federated subscriptions
‣ Reuse: federate existing GraphQL subgraphs, no need to modify them
‣ Control: subscription fields are managed directly in your own GraphQL subgraph

• Pros of subscriptions offloaded to a message queue
‣ Stream deduplication
‣ Non-GraphQL services can publish to subjects directly
‣ Usually higher performance, lower memory footprint

16 / 18

Takeaways

• Federated GraphQL subscriptions require some thinking and planning.

• Pros of traditional federated subscriptions
‣ Reuse: federate existing GraphQL subgraphs, no need to modify them
‣ Control: subscription fields are managed directly in your own GraphQL subgraph

• Pros of subscriptions offloaded to a message queue
‣ Stream deduplication
‣ Non-GraphQL services can publish to subjects directly
‣ Usually higher performance, lower memory footprint

You can mix and match both approaches

16 / 18

Also

17 / 18

Also

Workshop!

17 / 18

Also

Workshop! Tomorrow!

17 / 18

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor.

17 / 18

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

17 / 18

Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

Thank you!

17 / 18

Links

• WebSockets
‣ subscriptions-transport-ws
‣ Issues and security implications with subscriptions-transport-ws

• SSE
‣ GraphQL-SSE spec

• Multipart subscriptions
‣ Incremental delivery over HTTP
‣ Apollo docs

• Grafbase extensions
• Cosmo EDFS
• Pen Pineapple Apple Pen

18 / 18

https://github.com/apollographql/subscriptions-transport-ws
https://github.com/enisdenjo/graphql-ws/issues/3
https://github.com/enisdenjo/graphql-sse/blob/master/PROTOCOL.md
https://github.com/graphql/graphql-over-http/blob/main/rfcs/IncrementalDelivery.md
https://www.apollographql.com/docs/graphos/routing/operations/subscriptions/multipart-protocol
https://grafbase.com/docs/extensions
https://cosmo-docs.wundergraph.com/router/event-driven-federated-subscriptions-edfs#the-%E2%80%9Csubjects%E2%80%9D-argument
https://www.youtube.com/watch?v=NfuiB52K7X8

	Federated GraphQL
	Subscriptions are special… in GraphQL
	Subscriptions are special… in GraphQL
	Subscriptions are special… in GraphQL-over-HTTP
	Subscriptions are actually not that special in Federated GraphQL
	Subscriptions are actually not that special in Federated GraphQL
	Subscriptions are actually not that special in Federated GraphQL
	The problems with Federated Subscriptions
	Multi-protocol subscriptions
	Alternative: connect the gateway to a message queue
	Grafbase Extensions
	
	Corresponding configuration
	Advantages of an extensions-based approach compared to EDFS
	Takeaways
	Also
	Links

