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Subscriptions are special… in GraphQL

“subscription — a long-lived request that fetches data in response to a sequence
of events over time”

— GraphQL spec (Sept 2025)
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https://spec.graphql.org/September2025/#sel-GAFTJFABRBb-lZ
https://spec.graphql.org/September2025/#sec-Type-Name-Introspection


Subscriptions are special… in GraphQL

“Subscription operations must have exactly one root field.

To enable us to determine this without access to runtime variables, we must
forbid the @skip and @include directives in the root selection set.”

— GraphQL spec (Sept 2025)

“While each subscription must have exactly one root field, a document may
contain any number of operations, each of which may contain different root
fields. When executed, a document containing multiple subscription operations
must provide the operation name as described in GetOperation().”

— GraphQL spec (Sept 2025)
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https://spec.graphql.org/September2025/#sel-IALPJDFDABiBB4Bwzc
https://spec.graphql.org/September2025/#sel-IALPJDFbCBBBKsiQ
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Subscriptions are special… in GraphQL-over-HTTP

“GraphQL Subscriptions are beyond the scope of this specification at this time.”
— GraphQL over HTTP spec (draft)
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https://graphql.github.io/graphql-over-http/draft/#sel-EAFPCBJBSqsJ
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Subscriptions are actually not that special in Federated GraphQL
Schema of the sales subgraph:

1 type Product @key(fields: "id") {
2   id: ID!
3 }
4
5 type Subscription {
6   productSales: Product
7 }

Schema of the products subgraph:

1 type Product @key(fields: "id") {
2   id: ID!
3   name: String!
4 }
5
6 type Query {
7   productById(
8     id: ID!
9   ): Product @lookup
10 }
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Subscriptions are actually not that special in Federated GraphQL

Client -> Gateway

1 subscription ProductSalesWithName {
2   productSales {
3     name
4   }
5 }

Gateway -> sales subgraph

1 subscription {
2   productSales {
3     id
4   }
5 }

Gateway -> products subgraph

1 query {
2   productById(id: $id) {
3     name
4   }
5 }
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Subscriptions are actually not that special in Federated GraphQL

Data returned to the client:

1 {"name":"Labubu"}
2 {"name":"Labubu"}
3 {"name":"Crocs"}
4 {"name":"Zune"}
5 {"name":"Furbies (12 pack)"}
6 {"name":"Labubu"}
7 {"name": "Google Glass"}
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The problems with Federated Subscriptions
• Lack of transport standardisation has led to fragmentation:
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Multi-protocol subscriptions

• 🖊 Client — 🍍-> Gateway — 🍎-> 🖊 Subgraph
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Multi-protocol subscriptions

• 🖊 Client — 🍍-> Gateway — 🍎-> 🖊 Subgraph

• In the gateway, translations between:
‣ SSE,
‣ WebSockets

– subscriptions-transport-ws

– graphql-ws / graphql-transport-ws

• And different handshake shapes between each!
‣ Headers vs websocket init payload shape mismatch

1 interface ConnectionInitMessage {
2   type: 'connection_init';
3   payload?: Record<string, unknown> | null;
4 }
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Alternative: connect the gateway to a message queue

• The idea: the GraphQL federation gateway connects to a message queue (Kafka,
NATS, …), not the subgraphs directly
‣ The subgraphs or other services post messages to that queue

• Two implementations
‣ Cosmo EDFS
‣ Grafbase extensions
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https://cosmo-docs.wundergraph.com/router/event-driven-federated-subscriptions-edfs
https://grafbase.com/docs/extensions


Grafbase Extensions

• Pluggable gateway extensions compiled to WebAssembly (WASI preview 2)
‣ Define their own directives that will be used by the Gateway for query planning
‣ Near-native performance, in-process secure sandbox.
‣ Can perform arbitrary IO (but you can restrict that with permissions).
‣ Open source extensions from the Grafbase Marketplace or build your own
‣ They can act as virtual subgraphs
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1 extend schema
2   @link(
3     url: "https://specs.grafbase.com/composite-schemas/v1"
4     import: ["@key", "@derive"]
5   )
6   @link(
7     url: "https://extensions.grafbase.com/extensions/nats/0.4.1"
8     import: ["@natsPublish", "@natsSubscription"]
9   )
10
11 input SellProductInput {
12   productId: ID!
13   price: Int!
14 }
15
16 type Mutation {
17   sellProduct(input: SellProductInput!): Boolean!
18     @natsPublish(
19       subject: "productSales",
20       body: { selection: "*" })
21 }
22
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23 type Product @key(fields: "id") {
24   id: ID!
25 }
26
27 type ProductSale {
28   productId: ID!
29   product: Product! @derive
30   price: Int!
31 }
32
33 type Subscription {
34   sales(subject: String!): ProductSale
35     @natsSubscription(
36       subject: "{{ args.subject }}"
37       selection: "select(.price > 10)"
38     )
39 }
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Corresponding configuration

1 [extensions.nats]
2 version = "0.4.1"
3
4 [[extensions.nats.config.endpoint]]
5 servers = ["nats://localhost:4222"]
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Advantages of an extensions-based approach compared to EDFS

• Arbitrary data formats for the messages (not only JSON)
• Customizable and extensible without forking the Gateway. You can write

extensions for other pub/sub systems (Kinesis, etc.).
• More powerful filters (jq expression language)
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Takeaways

• Federated GraphQL subscriptions require some thinking and planning.

• Pros of traditional federated subscriptions
‣ Reuse: federate existing GraphQL subgraphs, no need to modify them
‣ Control: subscription fields are managed directly in your own GraphQL subgraph

• Pros of subscriptions offloaded to a message queue
‣ Stream deduplication
‣ Non-GraphQL services can publish to subjects directly
‣ Usually higher performance, lower memory footprint

You can mix and match both approaches
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Also

Workshop! Tomorrow!

Grote Zaal - 2nd Floor. 10:45am.

Thank you!
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Links

• WebSockets
‣ subscriptions-transport-ws
‣ Issues and security implications with subscriptions-transport-ws

• SSE
‣ GraphQL-SSE spec

• Multipart subscriptions
‣ Incremental delivery over HTTP
‣ Apollo docs

• Grafbase extensions
• Cosmo EDFS
• Pen Pineapple Apple Pen
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https://github.com/apollographql/subscriptions-transport-ws
https://github.com/enisdenjo/graphql-ws/issues/3
https://github.com/enisdenjo/graphql-sse/blob/master/PROTOCOL.md
https://github.com/graphql/graphql-over-http/blob/main/rfcs/IncrementalDelivery.md
https://www.apollographql.com/docs/graphos/routing/operations/subscriptions/multipart-protocol
https://grafbase.com/docs/extensions
https://cosmo-docs.wundergraph.com/router/event-driven-federated-subscriptions-edfs#the-%E2%80%9Csubjects%E2%80%9D-argument
https://www.youtube.com/watch?v=NfuiB52K7X8
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